Affichage des articles dont le libellé est chauffage. Afficher tous les articles
Affichage des articles dont le libellé est chauffage. Afficher tous les articles
8 janvier 2023

Comment régler / optimiser une courbe de chauffe

Aujourd'hui, une installation de chauffage performante, confortable et économique devrait obligatoirement être pilotée par une régulation utilisant une courbe de chauffe ou dite encore sur « loi d'eau ». Il est ainsi vraiment navrant d'entendre encore, de la bouche même de certains installateurs, qu'avec une sonde extérieure pour des radiateurs (même dimensionnés « au plus juste ») les habitants vont avoir froid en hiver !

Il n'est pas rare non plus de rencontrer des installations de chauffage possédant une telle régulation mais dont les capacités ne sont pas exploitées à leur maximum, bien souvent par incompréhension du fonctionnement, un mauvais réglage ou un manque de conseils avant-vente, entraînant alors bien souvent un inconfort pour les occupants (et une mauvaise image de cette régulation auprès du public), voir une surconsommation ...

17 mars 2021

Calcaire : toutes les chaudières sont sensibles !


Que ce soit pour une chaudière, un chauffe-eau, une pompe à chaleur..., nous recommandons systématiquement à tous nos clients de les alimenter avec une eau de qualité, propre (sans limon / boues), et de les protéger aussi des effets néfastes du calcaire : surconsommation, pannes sur des organes pourtant robustes (circulateur, corps de chauffe), baisse de débit ...

Les produits « nouvelles générations » disposent d'organes plus fins (ex. tubulures, échangeur à plaques, corps de chauffe, ...) très sensibles à la qualité de l'eau et aux dépôts de tartre ou de boues, et ce quelle qu'en soit leur marque. Pour bénéficier de leur garantie, tous les fabricants de chaudières se couvrent aujourd'hui et exigent dans leur documentation utilisateur, d'une part un désembouage du circuit de chauffage lors d'un remplacement, ainsi qu'une alimentation en eau non calcaire (dureté aux alentours de 15°f), non corrosive, et non chargée.

De par le discours malhonnête de certains installateurs, clamant que LA chaudière qu'ils leur proposent est « la plus robuste du monde », certains de nos clients doutent malheureusement du sérieux de notre message et de nos conseils en matière de qualité d'eau. Surtout lorsqu'ils remplacent une chaudière de + de 20 ou 30 ans sans aucun problème de calcaire.

Et pourtant à nouveau, tous les plus grands constructeurs l'indiquent (certes de manière plus ou moins évidente) dans leurs documentations commerciales, tarifs ou manuels installateur/utilisateur : les produits ont bien évolués, nous ne sommes plus en présence de la « grosse » chaudière de d'antan , et les duretés des eaux distribuées ont parfois fortement augmentées ! Nous avons donc décidé d'écrire cet article pour aider nos clients à y voir un peu plus clair et remettre à leur place quelques idées reçues !

Voilà par exemple ce que l'on peut trouver dans les conditions de garantie de 3 grands fabricants de matériels de chauffage pour l'application de leur garantie constructeur :

Viessmann
La garantie ne s'étend pas aux dégâts provoqués par :
- les dépôts ou les précipitations de minéraux (i.e. calcaire), de boues ou autres corps étrangers ainsi que la corrosion causée par l'oxygène de l'air dissous dans l'eau de la chaudière
- une eau agressive (i.e. trop douce), un mauvais traitement chimique de l'eau de la chaudière, un remplissage des préparateurs avec de l'eau qui ne remplit pas les conditions minimales de l'eau potable ou qui a été mal traitée, un mauvais nettoyage mécanique d'un préparateur.

Saunier Duval (notice utilisateur ThemaPlus Condens réf. 0020078810_01 - 11/09 - page 8)
La garantie pièces constructeur ne couvre pas : les détériorations consécutives à des modifications de la nature ou de la pression inadéquate ou irrégulière de l'eau ou du gaz, de la qualité de l'eau (tels que par exemple, calcaire, entartrage, embouage...) où à un changement de caractéristiques de la tension d'alimentation.

Frisquet : même avec cette marque, que pourtant certains "professionnels" présentent comme proposant des produits totalement insensibles au calcaire, le fabricant vous recommande de protéger votre chaudière Frisquet ! Vous pouvez ainsi lire ceci en page 18 du manuel utilisateur Frisquet (à télécharger pour preuve !) :
Votre chaudière est peu sensible à l'entartrage, néanmoins lorsque les teneurs dépassent une certaine limite, le calcaire sera cristallisé. Il se crée un entartrage de l'échangeur sanitaire mais aussi des machines à laver, robinets, etc. On classifie les eaux selon leur teneur en calcaire :

- Moins de 12°f : Eau douce
- De 13° à 24°f : Eau dure
- Plus de 25°f : Eau très dure
Rappel : 1°f = 10 grammes de calcaire par m3 d'eau, 24°f = 240 grammes de calcaire par m3 d'eau

Mise en garde : Si vous habitez une région où l'eau est dure ([NDLR] donc déjà à partir de 13°f pour Frisquet !) ou très dure, il y a lieu de prévoir un dispositif éliminant ou limitant les effets néfastes du calcaire. Votre installateur vous conseillera sur les différents systèmes efficaces. Attention, un adoucisseur doit être régulièrement vérifié. Il est indispensable pour la santé des utilisateurs et la durée de vie des appareils de maintenir les paramètres physico chimiques à des valeurs minimum : TH 8°f - PH 7,5 - Chlorures < 50mg/l

Certains opposent aussi souvent la production d'eau chaude avec échangeur à plaques à la production ECS par serpentin (préparateur ECS), en indiquant aux clients que cette dernière serait insensible au calcaire. Il n'en est rien ! Certes si par exemple une Frisquet Hydroconfort vous ne respectez pas les préconisations fabricant en termes de qualité d'eau (dureté), vous n'aurez peut-être pas de panne immédiate / franche comme vous l'auriez avec un système à échangeur à plaques. Mais en revanche avec un échangeur non protégé, vous serez assuré de consomme tout simplement jusqu'à 30% de plus d'énergie pendant de nombreuses années avec un totalement entartré et ce sans vous en rendre compte ! Il faut savoir que 1mm de calcaire sur la surface d'un serpentin de ballon d'eau chaude entraîne environ une perte de rendement de 10% (20% pour 3mm, 35% pour 6mm, 50% pour 12mm !). Et le jour où vous vous en rendrez compte (forcément car à un moment vous n'aurez plus suffisamment d'eau chaude sanitaire tellement l'échangeur n'arrivera plus à passer la puissance pour chauffer l'eau), vous serez en plus obligé de faire réaliser un détartrage du ballon (plus ou moins facile suivant l'accessibilité) coûtant encore plusieurs centaines d'euros ! Et c'est donc pour cela qu'un fabricant sérieux comme Frisquet informe ses clients de la nécessité d'avoir une eau de qualité pour leurs produits !

A nouveau, il en va de même avec TOUS les fabricants (vous trouverez les mêmes indications dans leurs documentations) qui cherchent aujourd'hui tout simplement à se protéger (légalement et en terme d'image), subissant de plus en plus d'attaques en règles de clients par exemple sur le net pour la résistance au calcaire de leurs produits, les duretés de nos eaux ne faisant malheureusement que grimper dans certaines régions ! Or ils préviennent tous dans leurs notices. A l'installateur donc, d'informer avec sérieux son client et de faire respecter les préconisations fabricants ...

Car avec le notice utilisateur, vous êtes clairement mis en garde directement par le fabricant. Si on vous parle d'adoucissement d'eau, ce n'est pas forcément que vous êtes en présence d'un commercial cherchant à vous « fourguer » un adoucisseur ! Ainsi, lorsqu'un professionnel sérieux vous conseil sur l'importance de protéger votre installation, c'est que ce dernier connait les exigences constructeurs permettant de garantir les performances et le longévité à votre équipement, et d'être aussi certain de pouvoir bénéficier tout simplement de la garantie constructeur. C'est un devoir de conseils !

Voir aussi : Comment déterminer la dureté de son eau ?

6 janvier 2020

Comparatif : quel thermostat connecté choisir ?


On assiste depuis quelques mois (bien que certains produits existent depuis plusieurs années) à l'annonce et la commercialisation de nouveaux thermostats d'ambiance connectés ou dits « intelligents » à raccorder sur votre système de chauffage pour réaliser des économies d'énergie. Ce sont des dizaines de modèles qui existent aujourd'hui comme le thermostat « Nest » de Google ou encore le thermostat « Netatmo » pour ne citer que les plus connus. Ces thermostats sont qui plus est éligibles au Crédit d'Impôt pour la Transition Energétique de 30% (CITE) et à la prime « économies d'énergie » (CEE) ce qui les rend aujourd'hui particulièrement attractifs. Ces thermostats nouvelle génération sont une petite « révolution » comme diraient certains. Mais peuvent-ils réellement s'adapter à tout système de chauffage (gaz, fioul, pompe à chaleur, radiateur électrique …) et vous faire économiser jusqu'à 30% de votre facture d'énergie comme le promettent leurs concepteurs ? Nous proposons de découvrir en détail quelques unes des solutions existantes actuellement.

Notre sélection de thermostats connectés (sans ordre de préférence) que nous avons pu  à de nombreuses reprises tester et installer chez nos clients et qui nous sont apparus les plus performants, fonctionnels et simple d'usage :
  • Thermostat Netatmo (ou MiGo si vous possédez une chaudière Saunier Duval)
  • Thermostat Google Nest v3
  • Thermostat Qivivo
  • Solution Honeywell Evohome
Découvrez-les en détails ci-après.


6 mars 2019

Qu'est-ce qu'un inhibiteur de corrosion ?

inhibiteur de corrosion boues tartre circuit chauffage

Sur vos devis d'installation ou de remplacement de chaudière ou de pompe à chaleur, dans le cadre d'un nettoyage de plancher chauffant, etc… vous pouvez voir apparaître la fourniture et l'injection dans le circuit de chauffage d'un produit chimique appelé « inhibiteur de corrosion » proposé par des installateurs sérieux.

Pour rappel, les moyens de lutte contre la corrosion peuvent se présenter sous diverses formes :
  • l'isolation physique par des revêtements, métallique (ex. acier galvanisé), le plus souvent organique (ex. peinture), voire minéral (fonte revêtue de mortier de ciment)
  • le maintien des caractéristiques chimiques de l'eau dans un état réduisant au maximum les vitesses de corrosion ;
  • l'application de potentiels électrochimiques, soit à partir d'un matériau sacrificiel (anode magnésium), soit à partir de sources extérieures (protection cathodique) ;
  • ou enfin l'ajout d'inhibiteurs de corrosion dans l'eau.
Les inhibiteurs de corrosion sont ainsi des produits chimiques, généralement sans danger, qui, ajoutés à l'eau du chauffage par exemple, vont réduire la vitesse de corrosion des matériaux véhiculant ou recevant ce fluide (ex. des radiateurs).

Cependant, l'efficacité de la plupart des inhibiteurs de corrosion est considérablement influencée par les caractéristiques chimiques de l'eau (voir « importance de la qualité de l'eau de chauffage ») et les conditions physiques comme la température et la vitesse d'écoulement.

On trouve sur le marché des inhibiteurs anodiques, cathodiques, « filmants » et absorbeurs d'oxygène suivant leur mode d'action.

Inhibiteur anodique

Les inhibiteurs anodiques forment un film protecteur sur les surfaces anodiques en bloquant la réaction électrochimique de dissolution du métal :

Fe → Fe2+ + 2e-

Les inhibiteurs anodiques du fer sont classés en produits « oxydants » et « non oxydants » suivant leur capacité à accélérer ou non la réaction d'oxydation du fer ferreux en fer ferrique :

Fe2+ → Fe3+ + e-

La formation rapide de Fe3+ est essentielle à la formation de couches de passivation anodique stables. L'efficacité des inhibiteurs anodiques oxydants est indépendante de la concentration en oxygène dissous de l'eau à la surface, alors que les inhibiteurs anodiques non oxydants ont besoin d'une concentration correcte en oxygène. Si la vitesse de réaction est suffisamment rapide, l'inhibition anodique est produite par la formation d'une couche efficace de Lépidocrocite (γ-FeOOH).

Les inhibiteurs non oxydants agissent conjointement avec l'oxygène en catalysant l'oxydation de Fe2+ par l'oxygène, ou en améliorant l'imperméabilité physique de la couche de Lépidocrocite, ou par les deux processus.

Inhibiteur cathodique

La réduction cathodique de l'oxygène entraîne la production d'ions hydroxydes (OH–). Les inhibiteurs cathodiques sont solubles au pH moyen de l'eau, mais ils forment une couche protectrice sur les surfaces cathodiques en produisant un composé insoluble à pH élevé et non conducteur électriquement. Les inhibiteurs cathodiques sont en général utilisés pour renforcer l'action d'autres types d'inhibiteurs.

Inhibiteur mixte anodique/cathodique

Les formulations commerciales utilisées en traitement d'eau comprennent à la fois des inhibiteurs anodi­ques et cathodiques, ceci pour deux raisons :
  • l'association des deux types réduit le dosage global nécessaire par rapport à l'emploi d'un seul inhibiteur ;
  • les circuits traités uniquement avec des inhibiteurs anodiques sont sensibles à une corrosion par piqûres si le traitement est interrompu, sous-dosé ou incorrect de manière générale.
Cet emploi mixte a été établi dans les années 1950 lorsque l'utilisation de formulations zinc-chromates a commencé à se répandre. Le zinc est un inhibiteur purement cathodique tandis que les chromates fonctionnent comme un inhibiteur anodique. Lorsque les chromates étaient employés seuls, il fallait des doses importante d'ion chromate pour assurer une bonne inhibition de l'acier. L'emploi de zinc (Zn2+) en association avec des chromates permet d'appliquer des doses de chromate 20x moindre

Absorbeurs d'oxygène

Les inhibiteurs anodiques et cathodiques décrits ci-dessus agissent bien en présence de concentrations d'oxygène dissous résultant du contact normal de l'air et de l'eau. Dans des systèmes à haute température ou hermétiquement fermés, comme les circuits de chaudières ou de chauffage central domestique, l'efficacité passe par la réduction de l'oxygène dissous de l'eau à de très faibles valeurs. Les produits chimiques utilisés à cette fin sont habituellement des agents réducteurs appelés « absorbeurs d'oxygène ».

Outre leur rôle dans la réduction des concentrations d'oxygène, certains absorbeurs d'oxygène favorisent la formation d'un film protecteur de magnétite. L'hydrazine et la carbohydrazine par exemple, favorisent la passivation par production de peroxyde d'hydrogène.

Inhibiteur organique

L'action de ces inhibiteurs est liée à la constitution d'un film mono-moléculaire entre le métal et l'eau. Ces produits sont souvent des agents tensioactifs « filmants » avec des groupements hydrophobe et hydrophile. L'extrémité hydrophile se fixe sur la surface du métal tandis que l'extrémité hydrophobe forme une barrière entre l'eau et la surface du métal.

Les amines filmantes sont couramment utilisées comme inhibiteurs de corrosion dans les circuits de condensats de vapeur. Ces amines grasses comportent 4 à 18 atomes de carbone, s'orientent parallèlement les unes aux autres et, perpendiculairement aux parois, constituent un film continu et imperméable.

Protection des métaux non ferreux : cuivre et aluminium

Un grand nombre de circuits contiennent du cuivre ou des alliages cuivreux. Or le cuivre est plus noble que le fer. Dans une eau pure, le cuivre se trouve dans un état d'immunité. En pratique, les alliages cuivreux sont prédisposés à la corrosion en raison de la présence d'agents oxydants forts tels que le chlore élémentaire ou de polluants agressifs comme l'ammoniaque.

La corrosion des alliages cuivreux est préjudiciable non seulement à cause des dégradations qu'elle provoque sur les éléments affectés, mais aussi en raison des effets du cuivre dissous (Cu2+) dans l'eau. Ce cuivre peut être réduit en Cu métallique sur les surfaces d'autres métaux ferreux, induisant des conditions favorables à la corrosion galvanique.

Les inhibiteurs les plus largement employés pour les alliages cuivreux sont les dérivés azolés.

L'aluminium est particulièrement sensible à la corrosion électrolytique. Les inhibiteurs les plus courants sont les silicates, les phosphates, les organo-azolés et les molybdates.

En pratique

L'inhibition de la corrosion n'est qu'un des aspects du traitement d'eau dans un circuit de chauffage. Il convient aussi de lutter contre l'entartrage et à la prévention des développements microbiologiques. Ainsi l'emploi d'inhibiteurs de corrosion doit être compatible avec tous les autres traitements de l'eau, les caractéristiques du circuit et ses paramètres de fonctionnement.

Sur le marché résidentiel, on retrouve généralement les 3 produits professionnels suivants (sachant que nous vous déconseillons vivement l'emploi de produits « exotiques » de GSB notamment 2 en 1, à savoir désembouant + inhibiteur !) :

Sentinel X100 Inhibiteur : composé d'un mélange unique d'inhibiteurs de corrosion spécifiques et très puissants, qui ciblent chacun une famille de métaux pour une protection inégalée des installations multi-métaux ; formulation qui offre une protection contre la corrosion, le calcaire, les bruits de chaudières et la formation d'hydrogène dans les radiateurs, chaudières, planchers chauffants, échangeurs …


Fernox Protector F1 : garantit une protection durable des installations de chauffage central domestiques contre la corrosion interne et la formation de tartre ; empêche la corrosion de tous les métaux présents dans ces installations, c'est-à-dire les métaux ferreux, le cuivre et les alliages de cuivre, ainsi que l'aluminium.


BWT Solutech Protection Intégrale : produit préventif complet contre le tartre, la corrosion, les boues et les dépôts organiques (algues et bactéries) avec un agent « antifouling » inclus ; compatible tous matériaux aluminium inclus.

expérience protection inhibiteur de corrosion Intérêt d'un inhibiteur de corrosion : à gauche, du cuivre, de l'acier, de l'inox et un peu d'alu dans 15cl d'eau du robinet non traitée ; à droite, mêmes matériaux dans 15cl d'eau traitée avec l'inhibiteur Sentinel X100 à 1% (source : www.chauffage-vincent.fr).

Intérêt d'un inhibiteur de corrosion : les deux éprouvettes fermées contient chacune un clou en acier ; toutes deux sont remplies d'eau, mais une seule contient l'additif inhibiteur de corrosion X100 de Sentinel ; l'une des deux éprouvettes conserve une eau limpide, tandis que l'autre est le siège de fines particules de rouilles en suspension dans l'eau. (source : Sentinel).


L'efficacité ou la « durée de vie » d'un inhibiteur de qualité professionnelle est généralement d'environ 5 ans en considérant des appoints inférieurs à 10% du volume total du circuit.

Pour un résultat optimal de l'inhibiteur, les installations doivent être « propre », c'est-à-dire nettoyées / désembouées et rincées.

Enfin, l'injection d'un inhibiteur de corrosion ne dispense pas de la pose d'un désemboueur magnétique sur une installation.
3 mars 2019

Importance de qualité de l'eau pour vos installations et équipements chauffage / sanitaire



De nombreux utilisateurs reportent souvent être confrontés à des problématiques de tartre, de fuites, de corrosion, d'embouage ... sur leurs réseaux de chauffage ou d'eau chaude sanitaire, sans en connaitre vraiment les causes et accusant alors souvent à tort le matériel ou son fabricant. Or traiter l'eau des réseaux de chauffage ou d'eau chaude sanitaire est devenue une nécessité (voir une obligation en termes de garantie), pour prolonger notamment la durée de vie des installations de chauffage ou de production d'eau chaude, réduire les coûts de maintenance, et pour tout simplement optimiser les performances énergétiques des générateurs en maintenant leurs rendements.

Sachant que les évolutions technologiques :
  • matériaux plus fins
  • sections de passage restreintes : réduction des volumes d'eau, sections de tuyauterie plus faibles, corps de chauffe plus compacts, radiateurs de faible contenance, planchers chauffants, micro-échangeurs …
  • nouveaux matériaux : tuyauterie en PER
  • alliages innovants : inox, aluminium silicium ; circuits multi-matériaux …
  • écarts de température importants (basse température, condensation, solaire …)
bien qu'elles aient permis de réduire significativement la consommation énergétique, de simplifier les installation et d'augmenter fortement le confort (notamment d'eau chaude sanitaire), amènent néanmoins de nouvelles contraintes notamment d'entretien.

Il est ainsi important que le professionnel du chauffage assure une qualité de l'eau circulant dans l'installation afin de maîtriser les problèmes d'entartrage, de corrosion et d'encrassement et explique à son client toute l'importance d'un suivi régulier de cette qualité. Car le traitement se fait, soit de façon préventive au moment de la mise en service des équipements, mais aussi de façon curative, par exemple lors d'une opération d'entretien ou de dépannage, et ce tout au long de la vie de l'installation.

En outre, il existe tout un ensemble d'exigences, de textes de référence ou de normes précisant ces aspects et qui doivent donc être respectées :
  • Cahier du CSTB n°3114 : pour préserver l'installation et lui conserver son rendement, il est fortement recommandé de prévoir, au dosage préconisé par le fournisseur, un produit inhibiteur de corrosion et d'entartrage, qui tienne compte de tous les métaux et matériaux constituants l'installation.
  • Circulaire du 2 mars 1987 qui complète celle du 2 juillet 1985 : rappelle la liste des additifs pouvant être introduits dans les circuits de chauffage utilisés dans les traitements thermiques des eaux destinées à la consommation humaine pour les échangeurs à simple échange.
  • DTU 60.1 : Plomberie sanitaire pour bâtiments à usage d'habitation.
  • Article 16.9 du RSD (Règlement sanitaire départemental) repris par la circulaire du 26 avril 1982.
  • Code de la santé publique - Titre II : Sécurité sanitaire des eaux et des aliments - Chapitre 1er : Eaux potables - Sous section 3 : Installations de production, de distribution et de conditionnement d'eau, partage des responsabilités et règles d'hygiène.
  • NF EN 14336 : point 5.5 : les circuits doivent être nettoyés et rincés ; le nettoyage peut comprendre un nettoyage chimique.
Alors nous vous proposons de découvrir et de comprendre dans cet article :
  • Pourquoi il faut traiter l'eau du réseau de chauffage ?
  • Quelles sont les principales causes de dégradation du réseau ?
  • Comment traiter son installation de chauffage ?
  • Quelles sont les recommandations ?

Pourquoi traiter l'eau des réseaux de chauffage

Qu'ils soient pour la production du chauffage ou celle de l'eau chaude sanitaire, tous les réseaux et tous les organes de chauffage ou d'eau chaude sanitaire sont concernés par le traitement de l'eau, que les installations soient neuves ou anciennes. Car dès lors qu'un réseau de chauffage ou d'eau chaude sanitaire est mis en eau, il se produit une série de réactions physico-chimiques qui risquent de venir dégrader l'unité de production de chaleur, le réseau et les émetteurs au cours du temps.

Les principales causes de dégradation d'une installation de chauffage ou de production d'eau chaude sanitaire sont :
  • l'entartrage,
  • la corrosion,
  • les boues,
  • les bactéries et les micro-organismes.
Deux paramètres principaux permettent d'apprécier la qualité de l'eau : le pH et le TH.

Le pH ou potentiel hydrogène

Il indique la concentration des ions hydrogène présents dans l'eau, c'est-à-dire si une eau est plutôt acide ou basique. Il permet d'évaluer le caractère agressif ou incrustant d'une eau.

Le pH se mesure sur une échelle allant de 0 à 14 :


Mesure du pH Qualité de l'eau Conséquences
pH de 0 à 7 Eau acide Favorise la corrosion
pH de 7 Eau neutre -
pH de 7 à 14 Eau basique ou alcaline Favorise l'apparition du tartre

Le TH ou titre hydrotimétrique

Il représente la somme des concentrations en ion calcium et magnésium. Il s'exprime en « degré français » ou °f. Cette mesure indique donc le risque de dépôt de tartre.

Aujourd'hui la dureté de l'eau ne fait pas l'objet d'une norme mais la recommandation des fabricants notamment de chaudière se situe entre 10 et 15°f (voir « Calcaire : toutes les chaudières sont sensibles ! »).

TH Qualité de l'eau Conséquences
de 0 à 5°f eau très douce eau corrosive favorisant les fuites
de 5 à 10°f eau douce
de 10 à 15°f eau légèrement calcaire eau équilibrée
de 15 à 25°f eau dure eau favorisant la formation de tartre
de 25 à 50+°f eau très dure

En savoir + : comment déterminer la dureté de son eau ?

Les principales causes de dégradation du réseau

L'entartrage

entartrage tuyauterie
Le calcaire, très présent à l'état naturel en France, au contact avec du dioxyde de carbone et de l'eau, se transforme et se dissout. De ce fait, lorsqu'une installation de chauffage est alimentée directement en eau du réseau, une quantité de calcaire non négligeable est introduite dans le réseau.

Lorsque l'eau est chauffée, le calcaire se dépose dans les canalisations et les interstices de certaines organes des équipements, occasionnant des dépôts sur des points singuliers de l'installation de chauffage. Ce phénomène peut provoquer les conséquences suivantes :
  • réduction du diamètre des canalisations : augmentation des pertes de charges sur le réseau et de la consommation électrique du circulateur.
  • diminution de l'échange thermique : diminution de l'efficacité globale de l'installation et augmentation de la consommation énergétique (0,1 mm de calcaire équivaut à une perte d'environ 5% à 7% de l'efficacité de l'échange thermique).
  • engorgement complet de l'installation (dans le pire des cas) : interruptions, voire arrêt des générateurs de chaleur.
  • détérioration rapide des anodes magnésium : directement liée à la conductivité de l'eau, plus l'eau est conductrice donc chargée électriquement, plus l'anode se consumera rapidement.

La corrosion

corrosion tuyauterie
Il existe plusieurs types de corrosion :
  • la corrosion par oxydation : l'eau à l'état naturel contient du dioxygène dissous. Il se passe une réaction d'oxydo-réduction au cours de laquelle l'oxygène dissous dans l'eau va oxyder les composants métalliques de l'installation et ainsi produire des oxydes métalliques. La quantité d'oxydes métalliques produits est fonction de la quantité d'oxygène dissous et du temps d'exposition.
  • la corrosion galvanique : cette forme apparaît au contact de deux métaux de nature différente. Chaque métal possède un potentiel électrochimique qui lui est propre. Ces potentiels peuvent être classés sur une échelle, du moins électronégatif au plus électropositif. Les métaux les plus électronégatifs se consomment au profit des métaux les plus électropositifs (le métal le plus noble attaque le métal le moins noble). Une échelle de noblesse des métaux (ci-dessous), dite échelle galvanique, a ainsi été établie.

La corrosion occasionne l'apparition d'oxydes ferreux. Les oxydes ferreux peuvent également provenir des soudures, des bactéries, de l'existence de dépôts, ou bien des phénomènes d'abrasion.

Ce phénomène peut entraîner :
  • des éraflures à la surface d'un métal : ruptures des canalisations pouvant provoquer des inondations
  • l'augmentation des consommations d'énergie : augmentation des pertes de charges sur l'installation, différences de température...

L'embouage

embouage réseau chauffage

Les boues

L'eau de chauffage chargée en calcaire et en oxydes ferreux prend alors une couleur brune, voire noire ressemblant à de la boue. Les oxydes ferreux proviennent tout simplement de la corrosion des radiateurs en acier, des générateurs de chaleur quand son primaire ou son corps de chauffe est en acier et de tous les accessoires et parties de l'installation composées d'acier (ex. serpentin d'un préparateur ECS). Ce phénomène est acide et occasionne :
  • la dégradation encore plus rapide de l'acier par corrosion (effet « boule de neige » !) : génère des gaz qui stagnent dans les parties hautes de l'installation et en particulier en haut des radiateurs.
  • effet sur les circulateurs : réduction du débit.
  • diminution de l'échange thermique : augmentation de la consommation énergétique.

Les micro-organismes (bactéries)

Le développement de bactéries est très présent dans les réseaux à basse température (plancher chauffant). Les principales raisons de ce développement sont :
  • la basse température : création de biofilm favorisé par l'emploi de matériaux de synthèse
  • l'absence de nettoyage de l'installation avant la mise en service : présence d'huile, de flux de soudures, de sable…
Ces bactéries peuvent :
  • entraîner des modifications importantes d'écoulement, voire le bouchage des conduites
  • être à l'origine de la formation de gaz (méthane)

Récapitulatif des risques sur une installation non entretenue

risque installation chauffage non entretenue qualite eau
  1. grippage des vannes de radiateur, mauvais passage de l'eau
  2. zone froide sur les radiateurs
  3. zone froide sur les radiateurs, accélération de la corrosion
  4. oxydation des soudures (risque de fuites)
  5. obstruction des tubes, des tuyauteries
  6. obstruction des corps de chauffe, échangeurs à plaques, ...
  7. blocage ou réduction du débit des pompes/circulateurs

Comment traiter son installation

Nettoyage de l'installation

nettoyage installation chauffage

Sur une installation neuve, le réseau devra au préalable être nettoyé. Il faut effectuer un rinçage méticuleux de l'installation afin d'évacuer les dépôts (décapants, copeaux, oxydes de soudure …) issus de sa création.

Sur une installation existante, pour obtenir un résultat optimal, celle-ci doit être nettoyée (désembouée) dans son intégralité, à l'aide d'un produit désembouant en respectant les préconisations du fabricant pour sa mise en oeuvre.

En savoir + : le désembouage d'une installation de chauffage

Protection de l'installation

Pour qu'un traitement de protection fonctionne pleinement, il est nécessaire d'appliquer un produit inhibiteur dans un réseau propre. Le produit inhibiteur de corrosion et d'entartrage doit tenir compte de tous les métaux et matériaux constituant l'installation. Le produit inhibiteur dépend de la nature de l'installation et sera défini selon le cas à traiter. Dans le cas où un antigel est nécessaire les mêmes précautions sont à prendre.

Pour éviter les problèmes d'entartrage dans les réseaux sanitaires, il est recommandé de mettre des appareils anti-tartre/anticalcaire à l'entrée des circuits (adoucisseur, procédés par dissolution polyphosphates, procédés physiques ...) adaptés/efficace avec la dureté de son eau.

Suite à des problèmes, afin d'éviter une récidive il faut impérativement :
  • reprendre les non-conformités éventuelles du réseau
  • mettre en place les traitements de l'eau préventifs adaptés
  • surveiller les appoints d'eau irréguliers ou les apports d'oxygènes à cause par exemple de tubes PER sans BAO (Barrière Anti-Oxygène).

Contrôle

Il est nécessaire d'effectuer un contrôle initial après traitement et annuellement (ou plus suivant les cas) par exemple lors de la visite de maintenance.

Les contrôles peuvent être dans un premier temps visuels (ex. couleur/aspect de l'eau de chauffage), et aussi utiliser des outils dédiés : réactif par colorimétrie (bandelettes pH, test goutte à goutte TH), pH-mètre, ... En fonction des résultats, il convient de faire un appoint au besoin.

Analyses

analyse eau de chauffage

Les analyses permettent de réaliser une photo à instant T de la qualité de l'eau du réseau. A l'issue du nettoyage de l'installation il est conseillé de réaliser une analyse validant la qualité du traitement. Si le traitement est conforme au référentiel du fabricant le rapport d'analyse le mentionnera. Il ne reste plus qu'à maintenir une concentration au seuil recommandé en réalisant régulièrement une analyse qui vérifiera la maîtrise des paramètres. Il existe pour cela des kits d'analyses tout prêts qu'il suffit de retourner à un laboratoire.

Les recommandations

La qualité de l'eau utilisée dans l'installation influence donc directement le bon fonctionnement du système de chauffage thermique. En cas de défaillance ou détérioration d'un appareil imputable à une qualité de l'eau inadéquate, le bénéfice de la « Garantie Constructeur » offerte à l'utilisateur du produit concerné sera bien souvent exclu par le fabricant.

Ainsi les fabricants de matériels de chauffage définissent les caractéristiques à respecter en ce qui concerne l'eau du circuit de chauffage selon les matériaux utilisés dans leurs appareils. Il convient de respecter impérativement ces préconisations. Ci-dessous quelques exemples de recommandations (il convient de toujours se référer aux exigences propres de chaque fabricants) suivants les matériels en place.

Chaudière : corps de chauffe en acier inoxydable ou cuivre

Caractéristiques Critères acceptables
pH inox : pH > 8.5
cuivre : 6.5 < pH < 9.5
TH de l'eau de remplissage < 20°f
Conductivité si traitement (µS/cm) < 1000µS/cm à 25°C
Sur une période de 5 ans, métaux dissous :
Aluminium
< 3mg/l
Cuivre
< 3mg/l
Fer
< 30mg/l
Chlorures
< 50mg/l

Le traitement utilisé doit permettre soit de respecter les valeurs ci-dessus, soit de respecter strictement les valeurs ou référentiels définis par le fabricant du traitement auprès des organismes de contrôles.

Les inhibiteurs doivent être compatibles avec les matériaux utilisés dans l'installation. L'ajout d'additifs à l'eau de chauffage pouvant entraîner des dommages matériels, il convient de respecter impérativement la notice du fabricant de l'additif. Le fabricant déclinera toute responsabilité en cas d'incompatibilité et d'inefficacité des additifs utilisés dans le système de chauffage.

Il convient de prendre toutes les précautions pour éviter l'introduction et la formation d'oxygène dans l'eau de l'installation en vérifiant le bon dimensionnement du vase d'expansion, de la ou des soupapes de sécurité, de la qualité des tuyauteries synthétiques (PER) ...

Pour les installation utilisant un produit antigel, il convient de s'assurer de sa compatibilité avec le matériau constituant le corps de chauffe et avec les autres composants de l'installation, et de le renouveler régulièrement au risque qu'il devienne agressif pour l'installation (voir ci-après).

Il convient de limiter au maximum les appoints d'eau sur l'installation pour éviter de diluer le produit de protection et d'apporter continuellement de l'oxygène. Si les appoints sont trop réguliers, il convient d'en chercher la cause (fuite, soupape défectueuse, vase d'expansion inefficace, ...).

Enfin, quel que soit le type d'installation, la pose d'un filtre désemboueur à barreau magnétique approprié sur le circuit retour de l'installation et son entretien est recommandée et permettra d'éviter le dépôt des matières en suspension dans le corps de chauffe du générateur.

Chaudière / Radiateur : corps de chauffe en aluminium

Il convient de respecter une valeur de pH  : 3.5 < ph < 8.5

PAC et CESI avec fluide caloporteur au glycol

Ces systèmes impliquent une vidange systématique :
  • tous les 5 ans selon la qualité du glycol mesurée (PAC et CESI auto-vidangeable)
  • tous les 3 ans selon la qualité du glycol mesurée (CESI sous pression)
Le seul contrôle à effectuer annuellement ou lors d'une opération de maintenance sera celui du taux de glycol (opacité au réfractomètre optique), afin de protéger efficacement les circuits contre les basses températures. Il faut adapter le taux de protection en fonction de la température de la région où l'on se trouve (température minimum régional).

Une trop forte concentration de liquide antigel entraîne :
  • une augmentation des pertes de charges
  • une diminution des échanges thermiques
Dans ce cas là, les incidences rencontrées sont notamment :
  • une baisse de la puissance de la PAC
  • une diminution du COP
  • une réduction de la durée de vie des équipements tels que les circulateurs
Une concentration de liquide antigel trop faible peut entraîner des dommages par corrosion ou des dégâts provoqués par le gel.

Cuve/ballon de stockage sanitaire avec anode magnésium

La plupart des ballons avec une cuve en acier émaillé ont cette dernière protégée par une anode sacrificielle en magnésium. Cette anode en magnésium permet de protéger de la corrosion la couche émaillée de la cuve du préparateur d'eau chaude sanitaire. La consommation en magnésium de l'anode est directement liée à la dureté de l'eau (TH). Plus une eau est calcaire plus elle est conductrice de courant, donc plus l'anode est consommée rapidement.

Il est important de procéder au contrôle régulier de l'anode d'un ballon lors par exemple de son entretien annuel et éventuellement de la remplacer. Lorsque celle-ci a un diamètre inférieur à 15mm, ou si une partie de la tige est à nue (même courte < 2 cm), l'anode doit être impérativement remplacée. Il est aussi possible de contrôler le courant de protection de l'anode au magnésium avec un contrôleur d'anode : si l'intensité du courant est >0,3mA, l'anode est opérationnelle ; si l'intensité du courant est <0,3mA, voire nulle, il faut soumettre l'anode à un contrôle visuel et la remplacer au besoin.

Récapitulatif

Chaudières / Chauffe-eau / Chauffe-bain

Opération à effectuer Principe et réalisation Mise en oeuvre Fréquence/Quand
Nettoyage du réseau sur une installation neuve :
- rincer l'installation afin d'évacuer les dépôts
sur une installation existante :
- désembouer le circuit de chauffage
- rincer l'installation jusqu'à l'obtention d'une eau claire (il est impératif d'effectuer un rinçage émetteur par émetteur)
désembouage selon différentes méthodes :
- chimique : injection de produits chimiques spécifiques dans l'eau du circuit
- mécanique : utilisation de l'eau à haut débit ou un mélange air-eau à haute pression
- écologique : installation d'un appareil spécifique en permanence sur le circuit
• avant la mise en eau pour une installation neuve ou lors d'un remplacement sur une installation existante
• désembouage chimique :
. tous les 5 ans (ou moins) pour les planchers chauffant
. tous les 7 ans (ou moins) pour les radiateurs
- désembouage mécanique selon le réseau :
▫ PER : de 5 ans (ou moins) à maximum 10 ans
▫ cuivre/acier, fonte/acier et aluminium : en moyenne 10 ans.
Traitement préventif de protection du réseau sanitaire mise en place d'appareils antitartre à l'entrée des circuits sanitaires (recommandé) - adoucisseur (faire attention à la qualité de l'eau afin d'éviter la corrosion)
- filtres mécaniques ou fixes à médias actifs
- procédés par dissolution de polyphosphates
- procédés physiques
- adoucisseur : tous les ans
- filtres mécaniques ou fixes à médias actifs : selon les préconisations du fabricant
- procédés par dissolution de polyphosphates : selon les préconisations du fabricant
- procédés physiques : tous les ans
Traitement curatif de protection du réseau de chauffage appliquer un produit de protection dans le réseau propre (prendre en compte tous les métaux de matériaux constituant l'installation) produit inhibiteur de corrosion et d'entartrage • après un contrôle
• après une analyse
Contrôle et analyse du traitement de protection du réseau de chauffage • mesurer la concentration du produit de protection dans le réseau
• valider le traitement mis en place
- bandelettes
- pH-mètre
- test goutte à goutte (TH)
- kit de test
- kit d'analyse
• après chaque traitement
• annuellement lors de la visite de maintenance

Pompes à chaleur

Opération à effectuer Principe et réalisation Mise en oeuvre Fréquence/Quand
Nettoyage du réseau • sur une installation neuve : rincer la partie glycolée de l'installation afin d'évacuer les dépôts et impuretés.
• sur une installation existante :
- désembouer la partie glycolée du circuit
- rincer la partie glycolée de l'installation jusqu'à l'obtention d'une eau claire
- désembouage chimique : injection de produits chimiques spécifiques dans le circuit glycolé
- désembouage mécanique : utilisation de l'eau à haut débit ou un mélange air-eau à haute pression
• avant la mise en eau pour une installation neuve
• lors d'un remplacement sur une installation existante
Contrôle du traitement de protection du réseau mesurer la concentration du produit de protection antigel dans le réseau • pH-mètre
• réfractomètre ou contrôleur de protection contre le gel
• après chaque traitement
• annuellement lors de la visite de maintenance

Systèmes solaires thermiques

Opération à effectuer Principe et réalisation Mise en oeuvre Fréquence/Quand
Nettoyage du réseau thermique solaire • sur une installation neuve (sauf CESI auto-vidangeable car le glycol est déjà pré-chargé) :
- rincer la partie glycolée de l'installation afin d'évacuer les dépôts
• sur une installation existante :
- désembouer la partie glycolée du circuit
- rincer la partie glycolée de l'installation jusqu'à l'obtention d'une eau claire
- désembouage chimique : injection de produits chimiques spécifiques dans le circuit glycolé
- désembouage mécanique : utilisation de l'eau à haut débit ou un mélange air-eau à haute pression
• avant la mise en eau pour une installation neuve
• lors d'un remplacement sur une installation existante
Contrôle du circuit glycolé mesurer la concentration du produit de protection antigel dans le réseau • pH-mètre
• réfractomètre ou contrôleur de protection contre le gel
• après chaque ajout de glycol
• annuellement lors de la visite de maintenance

Ballon / Cuves de stockage

Opération à effectuer Principe et réalisation Mise en oeuvre Fréquence/Quand
Contrôle de l'anode magnésium niveau de dégradation de l'anode de protection de la cuve visuel ou contrôleur d'anode • après chaque intervention sur le ballon nécessitant une vidange de ce dernier
• annuellement lors de la visite de maintenance
Groupe de sécurité lorsque le système est équipé s'assurer que le groupe de sécurité soit fonctionnel et ne soit pas obstrué par du tartre ouverture manuelle du groupe de sécurité • après chaque intervention
• annuellement lors de la visite de maintenance

16 juillet 2018

Sentinel Eliminator Vortex300 : nouvelle solution de filtration magnétique puissante et compacte !

Sentinel Eliminator Vortex300
Avec son filtre Sentinel Eliminator lancée en 2014, Sentinel apportait déjà une réponse haute technologie et ultra-performante pour garantir l'élimination de tous les débris dans une installation de chauffage. Fin 2017, Sentinel lançait sur le marché français l'Eliminator Vortex500, spécialement dévolu aux installations de taille moyenne comme pour le collectif. Cette année, une déclinaison de ce dernier, l'Eliminator Vortex300, est lancée, une filtration magnétique puissante et surtout particulièrement compacte, qui sera très appréciée sur les chantiers aux configurations exiguës, de plus en plus nombreuses, avec la généralisation des chaudières murales haut rendement ou à condensation. Il capture à la fois les débris magnétiques et non magnétiques nocifs pour l'installation.

Pour rappel, les débris en suspension (magnétiques et non magnétiques) présents dans les circuits de chauffage s'avèrent particulièrement néfastes au bon fonctionnement d'une installation de chauffage central. En effet, ils sont à l'origine de la constitution de boues générant des pertes de rendement en matière de chauffage, mais aussi des défaillances prématurées ou encore de pannes des équipements de chauffage, voir jusqu'à des colmatages irrémédiables des tuyauteries.


A l'instant de son grand frère l'Eliminator, le Sentinel Vortex300 est un filtre compact (dimensions : hauteur 205 mm x largeur 76 mm) adapté pour sa part aux débits importants (jusqu'à 50 litres/minute), s'installant simplement sur une installation neuve ou existante, et ce quelle que soit l'orientation de la tuyauterie grâce à son raccord en T orientable à 360° équipé de vannes (22 mm ou 3/4'') en laiton de haute qualité. A l'instar de la gamme Sentinel Eliminator, l'Eliminator Vortex300, fabriqué dans des matériaux robustes issus de l'industrie automobile, associe une filtration magnétique puissante à la technologie VortexCore afin de garantir une captation/rétention totale de tous les débris. Les doubles joints sont testés sous pression pour chaque filtre permettant à Sentinel d'appliquer une garanti 10 ans !

sentinel eliminator vortex coupe

VortexCore intervient ainsi sur la vitesse de l'eau en circulation en favorisant une durée de contact optimale entre les débris et les puissants aimants (champ de 9.000 gauss) pour maximiser la séparation et la capture des débris. Sentinel confirme d'ailleurs à ce titre que le filtre Eliminator Vortex300, équipé de double joints, capture plus de débris que d'autres filtres compacts du marché. Autre atout, avec Eliminator Vortex300, il n'y a pas lieu de craindre à un risque de blocage du filtre, car même lorsque le réservoir (300 ml) est plein, la circulation est maintenue. Son nettoyage ou sa maintenance restent toujours aussi simple : l'utilisateur peut, sans outil, ouvrir et visualiser les débris capturés dans le réservoir grâce à une bague amovible, ou retirer l'aimant et lancer une chasse via la vanne de vidange sécurisée.

7 novembre 2016

Comment débloquer (ou « dégommer ») son circulateur de chauffage ?


En cette période de remise en route du chauffage, nombreux sont les appels de clients sur les services de maintenance pour signaler un circuit de chauffage qui ne chauffe pas ! 

Pourtant, il s'agit assez souvent d'un simple grippage de la pompe chauffage qui n'a peut-être pas tournée durant les 5 ou 6 dernier mois de non chauffe, et dont les pales sont légèrement collées par les boues présentes dans l'eau de chauffage.

A noter que certaines chaudières (récentes et de qualité) disposent d'une régulation qui va lancer régulièrement un court cycle de fonctionnement de sa ou ses pompes pour justement éviter ce collage du circulateur en brassant l'eau du circuit. En outre, les chaudières produisant aussi l'eau chaude sanitaire et équipées d'une seule pompe ne sont normalement pas concernées (mais le problème risque néanmoins de se déporter sur la vanne 3 voie qui sert à basculer entre chauffage et ECS qui faudra aussi débloquer !).

Nous vous proposons donc un petit tutoriel vous permettant de « dégommer » (c'est le terme !) une pompe de chauffage dit aussi « circulateur ». Il s'agit simplement de dégripper, voir débloquer, cette pompe de chauffage ou ce circulateur.



  1. éteindre la chaudière et localiser le circulateur.
  2. vérifier la température de la pompe en posant la main dessus : si elle est brûlante, mieux vaut attendre qu'elle refroidisse pour éviter de se brûler avec de l'eau très chaude pouvant sortir de la pompe lors de sa manipulation.
  3. pour éviter les fortes projections, fermer les vannes départ/retour chauffage si vous en disposez sur votre installation, et purger un peu la chaudière.
  4. protéger avec des moyens appropriés l'environnement de la pompe car à nouveau de l'eau peut s'écouler ou être projetée durant les manipulations : bien souvent sur les chaudières type « murales » le circulateur est placé juste au-dessus de composants électriques ou électroniques.
  5. dévisser la vis centrale de la pompe (voir photo 1 ci-dessus) à l'aide d'un large tournevis plat ou une pièce de monnaie : cette « grosse » vis est généralement de couleur argent ou laiton jaune ; au moment du dévissage (attention quelques tours), attention l'eau qui risque de gicler vers vous ou couler le long de la pompe, et attention à ne pas échapper la vis afin d'être en mesure de la remettre rapidement pour limiter l'écoulement.
  6. une fois cette vis retirée, au fond du trou à quelques centimètres, il y a une autre vis plus petite, parfois avec une « empreinte » spéciales mais qui peut normalement être « manipulée » avec un tournevis plat classique ; à l'aide donc d'un tournevis et de cette petite vis solidaire de l'axe de la pompe, faire tourner la pompe à l'aide en tournant dans un sens puis dans l'autre, le sens de rotation en fonctionnement étant généralement indiqué par une flèche sur la pompe ; l'axe doit tourner librement sans efforts.
→ sur certaines pompes, il faut enfoncer/pousser le tournevis sur la vis au fond (qui revient ensuite à l'aide d'un ressort) pour pouvoir entraîner l'axe.

→ sur certains modèles de circulateur, la vis en façade est remplacée par un « bouton » qu'il faut juste pousser pour entraîner la vis interner ce qui évite les projections d'eau (voir photo 2 ci-dessus).

→ sur les circulateurs électroniques, la méthode ci-dessus n'est généralement plus possible : il n'y a en effet plus de vis en façade !

Pour ceux qui souhaiteraient vérifier que leur pompe fonctionne bien et tourne quand la chaudière est allumée, vous pouvez sauter l'étape #1 (ne pas éteindre la chaudière). Lorsque vous présenter le tournevis au fond du trou en dessous de la « grosse » vis : vous sentez alors que le tournevis est entraîné et choqué par l'axe en rotation (y aller avec précaution car cela tourne assez vite).


2 mars 2016

Chaudière condensation : les corps de chauffe en aluminium-silicium

corps de chauffe en fonte aluminium silicium AlSi remeha

Certains fabricants (ex. Saunier Duval, DeDietrich, ...) proposent de plus en plus de corps de chauffe en aluminium-silicium (AlSi), en remplacement de l'inox, sur leurs chaudières à condensation HPE. Nous retrouvons donc souvent les « pro inox » qui ne veulent pas entendre parler de l'aluminium, et d'autres qui ne font qu'en vanter ses mérites en indiquant que l'aluminium est le matériau d'avenir pour les échangeurs de chaleur des chaudières gaz !

Si ce matériau apporte certains avantages, il convient aussi de respecter certaines préconisations d'installation et d'entretien. Nous vous proposons de faire le point dans cette article.

28 février 2016

Vase d'expansion chauffage / sanitaire : comment en déterminer son volume ?

vase expansion chauffage calcul volume

Nous vous proposons une méthode simple pour déterminer ou contrôler le volume de son vase d'expansion chauffage. En effet, nos clients nous demandent souvent si le vase d'expansion prévu pour leur installation ou en place est suffisant.

Tout d'abord pour rappel, l'eau se dilate en se réchauffant, créant un accroissement de pression dans un circuit fermé de chauffage. Il faut donc placer sur le circuit de chauffage un dispositif, le vase d'expansion, capable d'absorber les variations (la dilatation) du volume de l'eau pour éviter une trop grande variation de la pression, voir une détérioration du circuit, tout en le maintenant étanche, contrairement à une soupape de sécurité qui elle déleste l'installation en laissant le fluide surcomprimé s'échapper.

Le vase d'expansion se place en théorie sur le retour du circuit de chauffage. Le volume du vase dépend de la température d'eau maximale d'utilisation (facteur de dilatation de l'eau), du volume d'eau dans l'installation, et des pressions d'utilisation du vase.

Sa pression de gonflage dépend de la hauteur d'eau de l'installation, ou surtout dans l'habitat individuel, de la pression minimale de fonctionnement de la chaudière. A noter que la pression de gonflage d'un vase se fait obligatoirement vase déconnecter de l'installation et purger !


Dimensionnement vase d'expansion chauffage

La formule de dimensionnement d'un vase d'expansion chauffage est la suivante :


                                 (1 + Pf) . (1 + Pr)
Vvase = Vexpansion . _________________
                                 (1 + Pg) . (P- Pr)

Avec
  • Vexpansion = volume d'expansion de l'installation = Vtotal x C
Température maximale d'eauCoefficient de dilatation C
100°C0.4312
90°C0.0359
80°C0.0290
70°C0.0230
60°C0.0170
50°C0.0121
40°C0.0078
30°C0.0043
20°C0.0018
  • Vtotal = contenance en eau de l'installation : si on ne connait pas Vtotal, se référer au tableau suivant :
Émetteurs
Contenance en eau en litre par kW installé
Radiateur fonte
16
Radiateur mince
14
Plancher chauffant
12
Convecteur
10
  • Pg = pression de gonflage : elle dépend de la hauteur d'eau de l'installation allant du point le plus bas ou point le plus haut (à raison de 0,1 bar par mètre de hauteur d'eau), ou de la valeur minimale d'utilisation de l'installation (soit en général environ 0,8 à 1 bar).
  • Pf = pression finale du vase fixée à 90% de la pression maximal du circuit de chauffage, soit couramment 2,7 bars, les soupapes de sécurité étant tarées à 3 bars).
  • Pr = pression de remplissage prise par défaut à 0,2 bar au-dessus de la pression de gonflage.


Exemple : pour une maison avec une installation d'environ 18kW de puissance en radiateurs "panneau acier" (départ maxi 70°C), 2 étages de 2,50m.

Vexpansion = 14 x 18 x 0.023  = 5,8
Pg = 0,1 x (2,5 + 1) = 0,35 bar (on considère que la hauteur maxi des radiateurs du 2ème étage est située à 1m du sol)
Pf = 2,7 bars
Pr = 0,55 bar
Vvase = 5.8 x [ (1 + 2.7) x (1 + 0.55) ] / [ (1 + 0.35) x (2.7 - 0.55) ] = 11,46L

On choisira donc à minima un vase d'environ 12L. A noter que les chaudières gaz résidentielles sont généralement équipées à minima d'un vase d'environ 18L, bien souvent largement suffisant pour les besoins des logements.




Dimensionnement vase d'expansion sanitaire

Attention : il ne faut pas confondre le vase d'expansion chauffage avec le vase d'expansion sanitaire !

Pour un vase d'expansion sanitaire, le calcul est légèrement différent. Cette formule ne tient pas compte d'une éventuellement différence de hauteur entre le groupe de sécurité et le vase d'expansion, on va dire négligeable en général dans une installation domestique et qui sera compensé avec une marge de sécurité :

                                      (Pm +1) . (Pres + 1)
Vvase = Vexpansion  . _______________________
                                      (Pg + 1) (Pm - Pres)

Avec

  • Pm = pression maximale du vase en fin de dilatation en bar : on prend en général la pression d'ouverture du groupe de sécurité (7 ou 10 bars en domestique) avec une pression maximale dans le vase de 10 à 20 % inférieure à la pression d'ouverture du groupe de sécurité (Pm = 0.8 x Pgroupe).
  • Pres = pression du réseau de distribution : généralement autour de 4 bar à l'aide d'un réducteur de pression.
  • Pg = pression de pré-gonflage du vase en bar (généralement 3 bars).


Exemple : avec un ballon d'eau chaude (ex. chauffe-eau électrique) de 200L chauffé au maximum à 60°C. Groupe de sécurité taré à 7 bar. Pression après réducteur 4 bar.

Vexpansion = 200 x 0.017 = 3,4L
Pg = 3 bar
Pm = 7 bar x 0.8 = 5.6 bar
Vvase = 3.4 x [ (5.6 + 1) x (4 + 1)  / ( (3 + 1) x (5.6 - 4) ] = 17,53L 

On pourra donc choisir un vase d'expansion sanitaire standard de 18L.

On se rend compte aussi avec ce calcul de l'importance du réducteur de pression. Car si la pression d'eau délivrée au logement n'était plus de 4 bar mais simplement de 1 bar de plus (5 bar), le vase nécessaire pour éviter de gaspiller de l'eau lors de la chauffe du ballon serait alors de 56L avec un pré-gonflage à 3 bars !

A savoir qu'il existe aussi une méthode empirique pour le volume minimal théorique du vase d'expansion, calculé sur la base de la loi de Boyle (le produit de la pression de gaz et du volume de gaz reste constant). Ainsi la norme européenne NBN EN 806-2 prévoit une valeur minimale de 4% du volume du ballon. Dans le calcul précédent, nous aurions donc 0.04 x 200L = 8L sachant qu'il faut quand même mieux retenir par sécurité la valeur maximale des 2 calculs, donc les 18L.
25 février 2016

La température « idéale » pièce par pièce pour son chauffage !


Pas toujours évident de faire rimer confort thermique avec économies d'énergie et respect environnemental ! Certes le chauffage est normalement avant tout une question de confort. Mais avez l'augmentation régulière des prix des énergies (bien que le fioul soit actuellement moitié moins cher qu'il y a 2 ans !), il convient aussi d'essayer d'être raisonnable sur les températures de chauffage demandées. ELYOTHERM vous conseille pour choisir pièce par pièce la température la plus juste pour maintenir un confort thermique acceptable et économique.

Tout d'abord, il convient de rappeler que selon l'article de loi R131-20 du Code de la construction et de l'habitation, la température d'un logement doit être de 19°C en moyenne sur son ensemble lorsqu'il est occupé. Il s'agit bien d'une moyenne, car si une température de 17°C peut convenir dans une chambre parentale, elle sera plutôt de 19 ou 20°C dans la pièce à vivre (ex. salon), et voir de 22/23°C ou plus dans une salle de bain.

Ensuite, l'ADEME (Agence De l'Environnement et de la Maîtrise de l'Energie) et les collectivités locales militent depuis plusieurs années pour instaurer une température de 19°C dans les logements. Hormis pour les personnes âgées, dans les pièces à vivre (cuisine, salon, salle à manger), c'est une température confortable qui permet de limiter la consommation d'énergie (1°C en plus, c'est environ 7% de consommation de chauffage en plus). Alors pour les frileux, mieux vaut peut-être mettre un petit pull plutôt que d'augmenter la température du chauffage !

Pour d'autres pièces, 19°C vont s'avérer un peu juste. La salle de bain doit être chauffée aux alentours de 22°C, au moins pendant le temps de son utilisation : prévoir par exemple un sèche-serviette programmable qui augmentera automatiquement la température aux moments opportuns.

Pour les chambres, hormis si elles sont utilisées avant le coucher par des enfants, il est préconiser pour dormir une température de 16 ou 17°C. Le Ministère de la santé conseille même de maintenir la température de la chambre des bébés à 19°C, et pas plus !

Lors de vos courtes absences, il convient d'abaisser la température de confort de 2 à 3°C maxi (suivant l'isolation et la ventilation du logement et du type d'émetteur de chaleur). Avec une régulation programmable, il est possible de régler la température du logement la maison selon le moment de la journée : par exemple 16°C la nuit, 19°C à au moment du lever, puis 17°C pendant la journée lorsque la maison est vide, et enfin 19°C à partir de 17h de retour à la maison. Pour des absences de plusieurs jours (vacances), la loi indique de devoir régler une température limite moyenne de chauffage à 16°C lorsque la durée d'inoccupation est égale ou supérieure à 24h et inférieure à 48h, et 8°C (température de hors gel) lorsque la durée d'inoccupation est égale ou supérieure à 48h.

Une fois les températures déterminées, encore faut-il pouvoir les mesurer et les contrôler précisément. Le Code de la construction indique que « la température de chauffage d'une pièce d'un logement [...] est la température de l'air, mesurée au centre de la pièce, à 1,50 mètre au-dessus du sol ». C'est d'ailleurs souvent ces indications qui sont mentionnées dans les notices des thermostats d'ambiance. Comme il est difficile de faire trôner un thermostat ou un thermomètre en plein milieu d'une pièce, il convient d'accrocher l'appareil de mesure au mur à une hauteur de 1m50 en évitant de l'installer près d'une source de chaleur (radiateur, cheminée, appareil électroménager, …).

Enfin pour contrôler les températures, il faut opter pour une régulation localisée (qui peut être en complément de la régulation centrale du chauffage) sur les émetteurs de chaque pièce (ex. robinetterie thermostatique sur des radiateurs eau chaude, thermostat intégré sur un radiateur électrique, …).